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Convection induced by centrifugal buoyancy 
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The onset of convection is observed in a cylindrical annulus which is heated 
from the outside, cooled from the inside and rotating about its vertical axis of 
symmetry. The dynamical constraint exerted by the dominating Coriolis force 
inhibits the instability when the top and bottom boundaries of the annulus are 
conical so as to make the vertical height vary with distance from the axis. The 
experimental observations are in good agreement with the theoretical predictions 
by Busse (1970a). This confirmation indicates the absence of subcritical finite 
amplitude instabilities and suggests that the annulus experiment provides a close 
dynamical model for convection in the liquid core of the earth. 

1. Introduction 
Convect'ion processes in stars and in the earth's core are governed by the 

fact that the direction of the buoyancy force does not, in general, coincide with 
the axis of rotation. While the case of coincidence can easily be realized in 
laboratory convection experiments, the presence of the earth's gravity seems to 
prevent the simulation of planetary and stellar convection processes under 
laboratory conditions. Inclining the rotation axis with respect to the vertical 
is nob useful, since in this case gravity generates an oscillatory force in the 
rotating system. The centrifugal force appears to be the most easily realizable 
alternative source of buoyancy. Indeed, it is found to be ideally suited to simulate 
cases of geo- and astrophysical interest at  high Taylor numbers, since in this 
case only the component of buoyancy perpendicular to the axis of rotation is of 
importance in a first approximation (Busse 1 9 7 0 ~ ) .  Since the centrifugal force 
points away from the axis of rotation rather than towards it as gravity does in 
celestial bodies, the temperature gradient must also be outward. Hence, in order 
to induce convective instability in a fluid annulus rotating about its vertical 
axis, the outer boundary must be kept at a higher temperature than the inner 
boundary. Instability occurs when the fluid density difference between the 
boundaries is large enough for the centrifugal potential energy gained by ex- 
changing fluid elements to overcome the effects of thermal and viscous dissipation 
and the possibly stabilizing influence of the Coriolis force. 

It is the variety of effects by which the Coriolis force influences the dynamics 
of the convective flow which makes the experiment of convection in a cylindrical 
rotating annulus interesting even without geo- or astrophysical motivations. 
At high rotation rates the experiment strikingly exhibits the consequences of the 
Taylor-Proudman theorem. This theorem requires that nearly stationary motions 
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in a rapidly rotating fluid system be approximately independent of the CO- 

ordinate z in the direction of the axis of rotation. Accordingly, the onset of 
convection occurs in the form of circulating rolls aligned parallel to the axis of 
rotation. In  fact, in an infinitely long annulus this form of convection can be 
strictly independent of the z co-ordinate and the Taylor-Proudman theorem 
can be satisfied perfectly. The Coriolis force is balanced by the pressure gradient 
in this case and its inhibiting influence vanishes, with the result that the con- 
vection has the same properties as convection in a layer heated from below, 
except for the influence of the cylindrical geometry, which is minimized when 
the small-gap limit is considered. 

The novel features of the annulus convection problem stem from the fact 
that the finitelength of the annulus alwaysrequires the motion to be z dependent. 
Two effects are of importance. As long as the end surfaces are parallel to each 
other only the no-slip boundary condition for the tangential component of the 
velocity field enforces z dependence of the motion. This z dependence has the 
form of an Ekman boundary layer and is the dominant cause of viscous dissipation 
unless the ratio of length to gap width of the annulus becomes large. More 
important in the limit of high rotation rates is the case when the two end surfaces 
are not parallel. In  this case the boundary condition for the normal component 
of the velocity enforces a z dependence. In  contrast to the no-slip boundary 
condition this boundary condition holds even for an inviscid fluid and introduces 
a non-dissipative constraint. Since this constraint produces the most dramatic 
increase in the temperature difference necessary for the onset of convection we 
shall focus our attention on it in the experimental investigation. 

The mathematical analysis of the various aspects of the convective instability 
in a rotating annulus has been presented in an earlier paper (Busse 1970a) 
hereafter referred to as I. This paper was restricted to a linear stability analysis 
which neglects effects caused by the finite amplitude of convection. An im- 
portant question is whether nonlinear effects can overcome the constraints of 
rotation, and whether instability in the form of finite amplitude disturbances 
can occur at  subcritical temperature gradients. The experimental observations 
indicate a negative answer to this question. They also show that theother 
assumptions made by the theory can be realized under laboratory conditions. 
In  particular, the action of gravity, although comparable with the centrifugal 
force, has a negligible influence because of the horizontal character of the motions 
enforced by the Taylor-Proudman theorem. 

Before describing the experiment we give a simplified theoretical analysis of 
the convective instability in 3 2. For a more detailed discussion based on a dif- 
ferent mathematical method we refer readers to I. The experimental apparatus 
and observational techniques are described in 5 3. I n  § 4 the observations of the 
onset of convection are presented. Within the experimentally accessible range 
of parameters those cases are emphasized for which the various effects of rotation 
become most clearly distinguishable. The paper closes with remarks on the 
relevance of the experiment to the problem of convection in the earth’s core 
and on aspects of the problem which should be the subject of future experiments. 
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FIGURE 1.  Geometrical configuration of the rotating annulus. 

2. Convective instability induced by centrifugal buoyancy 
We consider a cylindrical annulus filled with a homogeneous incompressible 

fluid and rotating with angular velocity Q about its vertical axis of symmetry. 
The annular region is bounded by cylindrical surfaces with radii ro & +D and 
by conical surfaces at  both ends as shown in figure 1. Constant temperatures Tl 
and T2 with T, > Tl are prescribed on the inner and outer cylinders, respectively, 
while the end surfaces are assumed to be insulators. Making the small-gap 
approximation D < ro, we introduce a Cartesian system of co-ordinates with 
the origin at the centre of the annular channel and the x, y and z co-ordinates 
in the radial, azimuthal and vertical directions, respectively. In  order to obtain 
a non-dimensional description of the problem we use L, L2-l and (T, - T') L/D 
as scales for length, time and temperature, where L denotes the mean height of 
the annulus. 

The non-dimensional Boussinesq equations of motion for the velocity vector ? 
and the heat equation for the temperature 0 are 

( 2 . l a )  

v.; = 0, (2.1b) 

a; 
EV28-V@- B i - k 9  8 =  2kxG+$.V8+-- ,  ( Q 2 J  at 

P-lEV28 = ?.V$+a$/at, ( 2 . l c )  

where E = v/QL2 

is the Ekman number, P = v / K  is the Prandtl number and 

B = r(T2 - TI) r,/D (2.2) 
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is the buoyancy parameter. v, K and y are kinematic viscosity, thermometric 
conductivity and expansion coeflicient, respectively. i ,  j and k are unit vectors 
in the x, y and z directions, and g is the acceleration due to gravity in the direction 
opposite to k. 

In the case when gravity is negligible compared with the centrifugal force equa- 
tions (2.1) have the solution + = 0, ( 2 . 3 ~ )  

0 = (T, + TI) D/2(T, - TI) L +x. (2.3b) 

More realistic in the laboratory experiment is the case when the two body forces 
are of the same order of magnitude. The temperature distribution ( 2 . 3 b )  does 
not change in this case, however, provided that E is sufficiently small, because 
an azimuthal velocity field in the form of a thermal wind is realized in the interior 
of the annulus. We shall disregard this velocity field in the following, since it has 
been shown in I that it has a negligible influence on the convective instability. 

In  order to investigate the stability of the basic solution (2.3), we superimpose 
infinitesimal disturbances v and B with exponential y and t dependences: 

v, B cc exp {iay + iwt}. 

Of interest is the case of marginal stability characterized by the vanishing of 
the imaginary part of w .  The stability depends strongly on the boundary con- 
ditions a t  the conical boundaries, given by 

2 = &-TTx, = -1 2 +TBX- (2.4) 

We shall assume qT, qB < 1, corresponding to a slight inclination of the boun- 
daries. The condition that the tangential component of the velocity field vanishes 
at  the boundaries (2.4) leads to the formation of Ekman layers which do not 
need to be considered explicitly if the condition for the normal component of 
the velocity field is modified by an influx of order E3 (Greenspan 1968, p. 92): 

(2.5) 1 -q,v.i-&Egk.V x v  at z = 4, I qov. i+&Eik.Vxv at x = -*. v . k  = 

The boundary conditions at the side walls are of lesser importance and will be 
discussed later. 

The solution of the equations of motion for v is based on the presumption that 
in the first approximation the flow is governed by the geostropic balance 

2 k x v z  -vp, (2.6) 

which requires that E as well as B and w be small numbers. Oscillations with w 
of the order unity are possible but not relevant to the stability problem, as 
has been shown in I. The balance (2.6), together with the condition V.v = 0, 
is satisfied by 

v z - &V x kp(x) eiay+iot,  (2.7) 

where the radial dependence of the pressure remains undetermined. Since we 
have chosen the flow to be normal to k the boundary condition (2.5) is also 
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approximately satisfied. By taking the curl the geostropic balance can be elimi- 
nated from the equation of motion: 

EV2V x v - BVB x (i - kg/Q2r,) = - 2 k .  V v  + iwV x v. (2.8) 

We multiply this equation, which contains only terms of small order, by k and 
take the average over the z co-ordinate, which will be indicated by a bar. Using 
( 2 . 5 )  we obtain 

k .  V x { E m -  iwV}+ j . V8 = [2y,v.i + E4k.V x v],,g 
+[Zr,v.i+E*k.V XV]~:=-+. (2.9) 

We shall replace the average ii as well as the horizontal component of v a t  the 
boundary by the approximate solution (2.7). Further, we eliminate 8 by using 
the heat equation 

and obtain for the as yet undetermined function p ( x )  

(2.10) P-lEV2B = i . v + i d ,  

x (&--a2) +2ia(qT+rB) p = -a2Bp. (2.11) 1 
Equation (2.11) allows us to discuss the two different ways in which the Coriolis 
force influences the onset of convection: the Ekman boundary-layer dissipation 
and the change in height owing to a non-vanishing value of yT +r,. We shall 
also include the case where viscous dissipation in the interior exceeds the other 
terms; i.e. ( L / D ) 4 E  % 1.  I n  this latter case, (2.11) reduces to the equation for 
convection in a layer heated from below without rotation. Using rigid boundaries 
at x = D/2L we find as the critical value of B for the onset of convection (see, 
for example, Chandrasekhar 1961, chap. 2) 

B, = 1708E2P-1(L/D)4 for E-t< LID. (2.12) 

BE-2P(D/L)4 is the R,ayleigh number used in ordinary convection. When E 
becomes small compared with ( D / J ~ ) ~  and the change in height can be neglected, 
the friction in the Ekman boundary layer becomes the dominant stabilizing 
force, yielding the critical value 

B, = 8(nL/D)2E*P-1 for E-b- % LID, (2.13) 

as has been shown in I. If a small but finite value of rT + 7, exists the variation 
of height becomes the main constraint in the limit of large rotation rates. Viscous 
dissipation is required to balance this constraint, which would lead to convection 
with infinitely small wavelengths in an inviscid fluid. When ( r r  + 7,) P is much 
larger than Ea viscous dissipation in the interior is much more effective in pro- 
viding the balance than is Ekman-layer dissipation. Neglecting the latter, we 
obtain from (2.11) as the critical value for B 

B, = 3(4PE2 (w)4]' for ( r r+qB)P  B Ea. (2.14) 
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In  contrast to the cases discussed above, w does not vanish in the present case: 

(2.15) = - 2(r, + r T ) / a C ( 1 +  P). 
In deriving (2.14) and (2.15) it  has been assumed that 

LnlD e {(VB + r r )  P/E(l+ P)It (2.16) 

in which case the azimuthal dependence of convection dominates the radial 
dependence. The critical wavenumber a, is given by 

a, = { 2 % 3  + rT) PIE(1+ PP. (2.17) 

Because of the low power of E in (2.14) the effect of height variation can most 
easily be isolated experimentally from the other effects. It is also the most 
interesting of the three mechanisms since it is associated with a time dependence 
and a differential rotation, although the latter phenomenon has not yet been 
investigated theoretically or experimentally. Of particular interest is the fact 
that the onset of convection does not depend on the thickness D of the annulus 
if the temperature gradient is kept constant. This is a remarkable feature if it 
is remembered that convection in a layer heated from below depends on the 
fourth power of the layer thickness. In the latter case the release of potential 
energy associated with the vertical velocity component is opposed by viscous 
and thermal dissipation, which inhibits motions with high wavenumbers. In  
the present case the release of potential energy is primarily opposed by the 
variation of height, which does not depend on the wavenumber. Hence the 
maximization of the buoyancy force leads to the high azimuthal wavenumber 
(2.17) and the negligible role of the radial scale D. 

3. Experimental apparatus and observational method 
The experimental apparatus which was constructed to observe convection in 

a rotating annulus closely reproduces the configuration considered in the previous 
section. A vertical cross-section of the apparatus is shown in figure 2. The coaxial 
cylinders are rigidly mounted on two circular end plates. A temperature gradient 
across the annular gap is established by circulating cool water on the inside of 
the inner cylinder and surrounding the outer cylinder by warm water. In  order 
to avoid optical distortions this latter step is accomplished by enclosing the 
annulus in a watertight rectangular box made of acrylic plastic. Warm water 
from a thermostatically controlled reservoir is circulated through an inlet and 
an outlet at opposite corners of the box. It is more difficult to provide water of 
constant temperature inside the rotating annulus. For this purpose two centred 
hollow shafts mounted on the circular end plates serve as inlet and outlet for the 
circulating coolant and, at  the same time, as the rotation axis. Attached to the 
inside ofthe end plates are baffles to ensure an efficient distribution of the coolant 
at the wall of the inner cylinder. Ball-and-socket couplings are used on both 
ends to connect the shafts to the tubes coming from and returning to the thermo- 
statically controlled coolant reservoir. Finally, figure 2 shows the copper- 
constantan thermocouple used to measure the temperature difference between 
the inner and outer baths. 
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FIGURE 2. Schematic diagram of the experimental apparatus. T, thermocouple. 

For the purpose of visual observation the outer cylinder was made of acrylic 
plastic, while aluminium tubing was used for inner cylinders of two different 
sizes. In  order to emphasize the role of the Coriolis force and to avoid too small 
temperature differences at  the onset of convection the inner diameter of the 
annulus was kept at  the rather small value of about 9 em. Rotation rates up to 
400 r.p.m. were achieved with a variable-speed motor, resulting in centrifugal 
forces up to 79. In  most cases the fluid in the annular region was water. For the 
purpose of visualization a small amount of a solution with suspended nearly 
neutrally buoyant particles (AQ 1000, Kalliroscope Corp.) was added to the fluid. 
As soon as shearing motions occur in the fluid the flaky particles become aligned 
with the shear. Because of non-homogeneous reflexion the pattern of the shear 
becomes visible when a stroboscopic light source (StrobotacR, General Radio Co.) 
is used. The onset of convection was determined by observing the annulus at  
a given temperature difference for discrete values of the rotation rate. Since 
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spurious patterns are sometimes generated by the spin-up process and since the 
growth rate of the convective instability is small in the neighbourhood of the 
critical value, the experimental conditions were kept constant for at  least 10 min 
before it was decided whether or not columns indicating convection rolls were 
present. A much longer waiting period of the order of 40 min was used when the 
temperature difference was changed to a new value. The critical point was 
approached in general both from above and below. No noticeable difference was 
found within the accuracy of observations. The very fact that columns become 
visible only at  finite amplitudes of motion causes an overestimate of the critical 
value B, of the buoyancy parameter. In  most cases, however, this error did not 
seem to exceed the magnitude of the other systematic errors. 

Typical sources of experimental errors are the measurement of the temperature 
a,nd the determination of the rotation rate. Since the difference T2- TI for the 
onset of convection amounts to only a fraction of a OK, large thermostatically 
controlled reservoirs (0.07m3 and 0.2 m3) anda high circulation rate (0.015 m3/min) 
were used to ensure that the temperature difference varied by less than 0.03 OK. 

On a time scale of a few minutes, however, the variation was considerably less 
and by carefully monitoring the temperature difference the estimated error in 
its determination was kept below 0.01 OK. 

The rotation rates were measured with the stroboscope, which indicated slow 
drifts of 2-3 yo on the time scale of a single experiment. Other uncertainties were 
introduced by inaccuracies and changes in the material properties. In  particular, 
the outer cast acrylic cylinder seemed to change heat conductivity after long 
periods of submersion in water. In  order to investigate this effect, the acrylic 
cylinder was replaced by a glass cylinder in some of the experiments. The measure- 
ments of the onset of convection did not show any noticeable difference, however. 
This fact seems to indicate that; the critical value of the buoyancy parameter 
does not depend strongly on the temperature condition at  the boundary, which 
is reassuring, since the theoretical boundary condition of aprescribed temperature 
is not well approximated in the experiment because of the finite thickness 
( -  0.3 cm) of the outer wall. The drop in the imposed temperature difference 
across the wall has always been taken into account in the calculation of B. 
The tolerance of about 0-03cm in the gap width of the annulus introduces an 
additional source of error. We have represented bhe data without error bars since 
the apparent scatter of the data gives a reasonable indication of the uncertainties. 

4. Experimental results 
In view of the large number of parameters in the general case, the experimental 

investigations have emphasized those cases in which the onset of convection is 
predicted approximately by one of the three simple relations for the critical 
value B, given in $ 2 .  Because of experimental limitations it has not always been 
possible to separate the three different stabilizing mechanisms sufficiently well. 
This is true particularly in the case of the Ekman-layer dissipation, when the 
theoretical curve should be regarded as a guideline rather than an actual pre- 
diction. 
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FIGURE 3. Onset of convection in the case when interior dissipation dominates. The 
theoretical line represents relation (2.12). The dimensions of the annular region are 
L = 28.6 cm, D = 0.6 cm, ro = 13.64 em. The fluid is 10 c St silicon-oil (Dow Corning 200 
Fluid). In this and the following figures filled circles indicate observation of convection 
columns ; open circles indicate that no convection was observed. 

We start with the simple case of dominating interior dissipation. It can be 
easily realized experimentally by choosing a high enough aspect ratio LID. 
Actually, a larger cylinder than that described in 3 3 was used for the measure- 
ments shown in figure 3. The fact that the onset of convection occurs for low 
rotation rates at  smaller values of B than those predicted by (2.12) is probably 
caused by baroclinic effects and the fact that the shear of the cubic profile of the 
basic axisymmetric flow contributes to instability. The latter influence is in- 
dicated by the observation that the convection columns show a slight ( FZ 10") 
deviation from the vertical in the sense of a helix spiralling upward in the direction 
opposite to that of the rotation. This property is in accordance with the well- 
known fact (Busse 1970c; Joseph & Munson 1970) that the onset of shear-flow 
instabilities in a rotating system occurs in such a way that the components of the 
curl of the shear and of the rotation vector perpendicular to the axis of the 
convection roll have opposite signs. 
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FIGURE 4. Onset of convection for D = 0.97 cm, r,, = 4.29 cm, with horizontal top and 
bottom plates. L = 0.95 cm in the case of the data on the right and L = 0.45 cm for 
data on the left side. The theoretical lines represent expression (2.13). Water a t  a mean 
temperature of 30 "C was used in this and the following experiments. 
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FIGURE 6. Onset of convection in the case of varying height with VT = T B  = tan 22.5", 
L = 1.96 cm, D = 0.97 cm, ro = 4.29 cm. The theoreticallinerepresentsexpression (2.14). 
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In  order to observe the onset of convection in the case when the Ekman-layer 
dissipation is the dominant feature, it  became necessary to use rather small 
values of L down to a value of less than 0-5cm. In this case, the method of 
observation of the columns is rather cumbersome, and it may be that the critical 
value B, is overestimated by the observations more than in the other cases. 
However, the data presented in figure 4 clearly show the approach to the 
theoretical line as LID decreases. 

Particular attention has been devoted to the case of changing height. The 
stabilizing influence of this case can be strikingly demonstrated by combining 
the changing-height case and the constant-height case into one annulus, as shown 
in figure 5 (plate 1). While strong convection columns are visible in the latter 
case the axisymmetric state is still stable in the first case. 

Figure 6 shows the observations ofinstability when the top and bottom surfaces 
are inclined at  22.5" to the horizontal. The experimental data agree well with the 
theoretical expression (2.14) for rlT = vB = tan 22.5" = 0.4142. Even for larger 
inclinations the theoretical formula predicts the onset of instability quite well, 
as shown in figure 7 (a),  which shows the result for 45" cones. This is a surprising 
result in view of the fact that the theoretical expression was derived under the 
assumption of small inclinations. The experiment suggests that the horizontal 
component of the velocity field a t  the boundary is well represented by (2.7) for 
7 of order unity. That the perturbation result may still be applicable in this case 
is also suggested by the fact that the buoyancy, viscous force and time dependence 
still give terms in the equation of motion (2.1 a )  small in comparison with the 
Coriolis force. 

It has been emphasized earlier that a striking feature of expression (2.14) is 
the property that for a given temperature gradient the onset of convection is 
independent of the width of the annulus. This prediction has been tested by 
repeating the experiment with 45" cones for a gap width increased by 60%. 
For high rotation rates the onset of convection as shown in figure 7 ( b )  is indeed 
undistinguishable from that for the small gap width within experimental 
accuracy, while at low rotation rates the expected destabilizing effect of the iii- 
creased width becomes noticeable. 

A number of additional experiments have been performed which are not pre- 
sented here since they correspond to cases in which the general equation of the 
theory does not reduce to the simple asymptotic expressions (2.12), (2.13) and 
(2.14). Since these expressions govern the important effects it is of lesser interest 
to relate experiment and theory in more general cases. In  a number of repre- 
sentative cases the experiment was also performed with a reversed temperature 
gradient in order to establish the convective origin of the instability in contrast 
to the baroclinic instability, which does not depend on the centrifugal force. 
Within the range of parameters used for the experiments described above, no 
instability was found, in agreement with the theoretical expectation expressed 
in I .  

Qualitative observations of the wavelength and phase velocity have been made 
in the case of changing height. The decrease of the wavelength with increasing 
rotation rate was clearly noticeable and the phase velocity was estimated from 
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FIGURE 7. Onset of convection for 7~ = 7~ = tan 45'. The theoretical line represents 
expression (2.14). (a) I) = 0.97 cm, r0 = 4.29 cm, L = 6.98 em. ( b )  D = 1.56 cm, 
T,, = 3.96 em, L = 6.69 cm. 
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the propagation rate of the visible columns. However, the convective instability 
typically did not occur in the form of a single individual wave, but rather in the 
form of a superposition of several waves. Accordingly, the columns showed 
beating phenomena and only crude results could be obtained by visual observa- 
tions. Qualitatively the results agreed with expressions (2.15) and (2.17), although 
the observations tended to show smaller values for the frequency w as well as 
for the wavenumber a. In  future experiments, which will be directed towards 
nonlinear phenomena, we shall also attempt to employ measuring devices to 
determine quantitatively the amplitude of convection as the columns pass by 
a particular point of the wall. 

5. Concluding remarks 
The good agreement found between the observations and the theoretical 

predictions permits the conclusion that the centrifugally induced convective 
instability is adequately described by linear theory. In  a sense it is surprising 
that no finite amplitude mechanism of instability appears to have been observed 
in the experiment. The nonlinear terms in the equation of motion allow sub- 
critical onset of instability in many situations where a strong constraint inhibits 
the growth of infinitesimal disturbances. An example of this phenomena is the 
onset of subcritical finite amplitude convection in a layer heated from below and 
rotating about a vertical axis (Veronis 1968). 

The validity of the linear stability theory in the laboratory experiment en- 
courages its application to the problem of convection in the earth’s core. If 
thermal convection does indeed occur in the core, the critical condition for the 
onset of instability derived in I and corresponding essentially to expression (2.11) 
imposes strong constraints on the values of the physical parameters. The theory 
remains essentially applicable in the case of non-thermal convection caused by 
the sinking of solid particles (Busse 1972; Malkus 1973). In  the case of convection 
in a layer heated from below, nonlinear aspects of convection such as convective 
heat transport have been successfully described by perturbation solutions based 
on the linear results. The experimental observations indicate that such an analysis 
is likely to succeed as well in describing the nonlinear properties of convection in 
an annulus. One of the particularly intriguing nonlinear features is the dif- 
ferential rotation generated by convection in the case of changing height. This 
phenomenon has been analysed by the perturbation method in the case of 
a slowly rotating spherical convection layer (Busse 1970b, 1973), and a similar 
analysis can be done without difficulty in the asymptotic case of high rotation 
rates considered in the present paper. Corresponding measurements of the dif- 
ferential rotation in a modified experiment are planned which will allow US to 
demonstrate this important geo- and astrophysical phenomenon in the laboratory. 

The authors are indebted to the late Paul Cox for his skilful construction of 
the apparatus. The research was supported by the National Science Foundation 
under Grant GA-31247. 
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FIGURE 5 .  Tho experimental apparatus with an annulus of constant height in the upper 
part and an annulus with conical end surfaces in the lower part,. The stabilizing eff'ect of 
the variation in height is evident from the fact that strong convection columris arc seen 
in the upper annulus whila the lower arinulus is stable. Scale in om. 

BUSSE ANU CARRJGAN (Facirtq p .  593) 
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